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Numerical Simulation of the Blast-Wave Accelerator

Dennis Wilson,* Zhigiang Tan," and Philip L. Varghese*
University of Texas at Austin, Austin, Texas 78712

A concept for propelling a projectile to hypervelocities is described, and the feasibility is demonstrated by
numerical simulations. In theory, the concept employs imploding blast waves to accelerate a projectile as it travels
down a launch tube. The launch tube can be open to the atmosphere or sealed and maintained at some low pressure
to minimize internal drag. The launch tube has a liner that contains a suitable explosive or energetic material.
The explosive is configured with inert annular rings to prevent upstream detonation. A suitable trigger detonates
each explosive ring sequentially as the projectile passes. The resulting blast wave causes an elevated pressure on
the afterbody of the projectile. The acceleration continues until the projectile exits the launch tube.

I. Introduction

HE blast-wave accelerator is a concept for propelling a projec-

tile through a gun tube. The launcher concept and a preliminary
quasisteady analysis was first presented at the first ram accelerator
conference.! Multiple rings of explosives can be placed inside the
wall of a standard gun tube, as shown in Fig. 1. The explosive rings
are detonated sequentially by a mechanical or electromechanical
trigger, and the resulting blast wave and subsequent high-pressure
gas exert a force on the base of the projectile. The process can con-
tinue down the tube until the projectile reaches the desired velocity.
The theoretical limiting velocity of the projectile can be very high.
In the case of constant blast-wave velocity V;, and constant angle of
the projectile afterbody with the tube axis «, this limiting velocity
is V,/sina. In practice, V;, depends on the explosion intensity and
the background pressure. It also varies spatially. However, a typical
value is 10 km/s. For the geometry shown in Fig. 2 with ¢ = 20
deg, the limiting velocity is 29 kmy/s. In practice, the actual velocity
would be considerably less. Note that the material strength of the
projectile (and perhaps the tube if it is to be reusable) prohibits us
from increasing the energy intensity arbitrarily along the tube.

In practice, the proposed design would probably be used to accel-
erate a projectile to hypervelocities using a conventional prelauncher
such as a powder gun. The prelauncher would be used to accelerate a
projectile to some modest velocity, say 1 km/s. The blast-wave accel-
erator then could be used to boost the velocity to much higher levels.

The blast-wave accelerator is energy efficient in terms of explo-
sive mass consumed and gun tube length. The explosive is injected
behind the projectile and thus is more efficient than traditional gun
propulsion where the propellant is fixed at the breach end of the
barrel. Indeed, the blast-wave accelerator is more like a rocket pro-
pelled inside a tube. In fact, the energy efficiency of the blast-wave
accelerator is even higher than that of a rocket, because the fuel
is not accelerated but, rather, it is fixed on the wall. By adjusting
the explosive masses and positions, it is possible to achieve nearly
optimal pressure distribution behind the projectile, so that the total
acceleration is optimized.

The objective of this work is to investigate the projectile accel-
eration and flow behavior via numerical simulation. The analysis
is intended to provide initial estimates of the launcher capabili-
ties. In Sec. I1, a literature review is presented. In Sec. II1, the pa-
rameters of the simulated accelerator are given, and in Sec. IV the
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governing equations are described. In Sec. V, the numerical pro-
cedure is described. In Sec. VI, the simulation of an idealized one-
dimensional accelerator is presented, and in Sec. VII, the simulation
of more realistic axisymmetric accelerators is described.

II. Literature Review

Background

Recently, the Space Systems Division at NASA Langley Research
Center identified a national need for a launcher capable of accelerat-
ing large packages (nominal diameter of 250 mm, mass of 14 kg) to
velocities of 6 km/s.? The proposed facility would be used primar-
ily to study phenomena associated with hypervelocity aeroballistics
and aerothermodynamics. The NASA study identified three existing
technologies that have a reasonable probability for success: electro-
magnetic rail guns, ram/scram accelerators, and two-stage light gas
guns. The ram/scram accelerator bears some similarity to the blast-
wave accelerator. However, there is a fundamental difference in the
operational principle.

The U.S. Army also has a strong interest in hypervelocity, high-
energy launchers capable of accelerating masses of several kilo-
grams to velocities in excess of 3 km/s.> The primary motivation is
to study large-scale hypervelocity impact and penetration dynamics.
Other applications involve fundamental studies of material behavior
at large strain rates, and development of extensive equation-of-state
data.

More grandiose ideas such as impact fusion* and low-Earth-orbit
(LEO) insertion also have been suggested. Velocities in the 20-km/s

High energy
explosive ring

Projectile

High pressure
(hemi-torodial)
blast wave

Moving shock

Fig. 1 Schematic of the blast-wave accelerator.
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Fig.2 Computational domain and coordinate system showing the axi-
symmetric accelerator model.
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regime are necessary to achieve impact fusion, whereas LEO in-
sertion would require launch velocities approaching 10 km/s with
masses of several hundred kilograms. Currently, no launcher exists
for these regimes of the velocity/mass parameter space.

Explosive Launchers

During the past 30 years, there have been numerous designs pro-
posed and prototype launchers built that employ an explosive to
drive a projectile or a thin metal (flyer) plate at hypervelocities. For
the purpose of this review, they are considered to fall into three broad
categories: explosive guns, explosive shock tubes, and continuously
detonated explosive launchers.

The simplest type of explosive launcher is the explosive gun. It
is similar to a propellant gun, but contains a large quantity of high
explosive (HE) in the breech. The HE is detonated and the resulting
high-pressure gas is channeled into the barrel through a conical
transition. The volume of the breech and conical transition region is
typically equal to the barrel volume. The gun is usually designed for
one shot because the operating pressure usually exceeds the material
strength of the gun.

One of the first explosive guns built was described by Willig and
Semon® in 1959. It used 0.7 kg of composition C-4 explosive to
accelerate a 6.35-mm-diam, 6.35-mm-long aluminum cylinder to
5.5 km/s. More recently, Holt et al.% built a modified version of the
explosive gun, which launched a 12.1-g steel projectile to 3.2 km/s
using 0.82 kg of composition B explosive.

Explosive shock tubes convert HE energy into directional gas
kinetic energy to produce shock-wave velocities of ~10-15 km/s
in channels of relatively large cross sections (~102-~10 cm?). The
conversion efficiency of HE into gas kinetic energy is approximately
10%. The earliest studies on the capabilities of explosive shock
tubes date back to the mid-1950s. The first designs simply detonated
a cylindrical HE inside a tube to produce a planar shock.” More
sophisticated designs, such as the Voitenko compressor,? the shaped
explosive driver,” and the linear implosion driver,'” were developed
during the 1960s. A discussion of the operational principle of these
devices is given by Glass et al.,'' who also describe an implosion-
driven shock tube.

Finally, Menikoff et al.'? studied a shock wave driven by a con-
tinuous phased implosion. The axially phased implosion on the wall
of a channel acts as a virtual piston to drive a planar shock wave.
Once again, their application was not a launcher but rather a system
they described as a super shock tube.

Although these devices were developed for producing very-
high-velocity and very-high-energy gas flows, there is no intrinsic
problem in converting them into hypervelocity launchers. In fact,
Titov and Fadeenko'® used an explosive-tube design to accelerate a
small steel sphere by means of aecrodynamic drag inside the shock
tube.

Recently, experimental and computational work'* on plane-wave,
explosive shock tubes designed to accelerate thin (I-mm) metal
disks to velocities approaching 10 km/s has produced encouraging
results. Three explosive launchers were studied. The first was a
plane-wave shock tube (PWST). In this design, the disk is placed
in contact with an explosive initiated by a plane-wave lens. The
detonated gases expand behind the plate and accelerate it down
the barrel. The fast shock tube (FST), similar in design, employs
a plane-wave explosive lens. The detonation propagates a shock
inside a cylinder containing a polystyrene foam, which acts like a
gas. As the shock propagates in the foam, the Mach disk grows until
it matches the diameter of the metal disk, which then is accelerated
with a nearly planar pressure wave. The FST also can have a short
barrel downstream of the thin disk, referred to as an FSTB, to confine
the high-pressure gas and achieve higher velocities.

Marsh and Tan'* summarized the results of the experimental and
computational effort on planar-wave explosive launchers at a re-
cent conference on shock compression of condensed matter. They
launched identical stainless-steel plates of 1.5-mm thickness and
11-mm diameter. The maximum, intact, plate velocities achieved
for the PSWT, FST, and FSTB were 6.5, 7.4, and 9.0 km/s, respec-
tively. Kerrisk and Meier!> addressed some of the problems associ-
ated with the FST. They noted that the peak pressure ranges from 30
to 100 GPa, which is well above any reasonable material strength

limit. Another problem is that during acceleration the driving gas
pressure is not uniform over the plate.

The idea of using a tube lined with explosive to drive a projectile
is not completely new. In fact, several concepts have been proposed
that are quite similar to the blast-wave accelerator described in this
paper. The Soviet literature contains two concepts that involve a
continuously detonated explosive charge. Voitenko!¢ described a
concept that he called the linear jet engine. The proposed design
was a tube lined with a continuous layer of explosives. A projec-
tile fired inside the tube would presumably detonate the explosive,
which then would expand over the tail cone. No experiments or se-
rious computations were reported. However, Voitenko made an es-
timate of the velocity using a simple, one-dimensional, quasisteady
analysis. Based upon this analysis, he estimated a velocity of 8 km/s
for a 1-kg projectile mass inside a 60-m-long tube containing 30 kg
of explosives with an energy density of 4 MJ/kg. Another Russian
concept similar to the previous one was proposed by Tatzhanov.!?
The details for both the design and the analysis were very sketchy.
Without presenting any justification, Tatzhanov claimed that a
projectile of unspecified mass could reach a velocity of 8 km/s
(the explosive detonation velocity) in a tube of unknown length.
The explosive is detonated continuously in both of the designs; thus
the detonation wave speed would strongly control the performance.
The design proposed in this paper places discrete explosive rings
along the gun tube, so that the charges can be detonated indepen-
dently. This separates the projectile speed from the detonation wave
speed, thus allowing precise control of the projectile acceleration
inside the tube.

An explosive launcher very similar to the present design was de-
scribed through a verbal communication with Dennis Bushnell,'®
who visited the Central Research Institute of Machine-Building in
Kalliningrad, Russia. During this visit, Pavel Kryukov described a
launcher, referred to as a RAM mass accelerator. No sketches were
available but, according to Bushnell, it was a tube with annular ex-
plosive charges. A single-page technical sheet listed the following
information: length = 100 m, explosive mass = 150 kg, bore = 100
mm, projectile mass =1.5-2.3 kg, injection velocity = 1.5 kmy/s,
and expected muzzle velocity = 9 km/s. The project status was de-
scribed as follows: accelerator model has been built; synchronous
ignition of high explosives has been experimentally confirmed; ex-
periments to define ignition delay time have been performed. The
authors are not aware of any further information or experiments.

Hertzberg et al.!” have suggested an HE-driven ram accelerator
that is similar to the blast-wave accelerator. In this design, the pro-
jectile is injected down a tube that contains a continuous HE coating
between a thin metal liner and the gun tube. The normal shock on the
rear of the projectile is assumed to produce a pressure high enough to
detonate the HE, which then drives the metal linear inward to choke
the flow, thus maintaining the shock on the aft end of the projectile.
The authors claim that this will then produce a self-synchronized
operation mode. They also estimate that velocities of 20-30 km/s are
theoretically possible. Finally, Cambier and Bogdanoff*’ suggested
firing a subcaliber projectile inside a tube and using the oblique
shock to detonate an explosive on the tube wall.

Propellant Launchers

There are several propellant-type launchers that apply either a dis-
crete or a continuous impulse along the length of the launch tube.
The earliest design involved a traveling-charge concept or impulse
gun originally proposed by Langweiler.?! More recently, experi-
ments at the Ballistic Research Laboratory (now the Army Research
Laboratory) have produced muzzle velocities in excess of 2 km/s
for a charge-to-projectile mass ratio of 1.6.2* In a traveling-charge
gun, fast-burning propellant is attached to the base of a projectile.
The projectile is launched by a conventional gun and the traveling
charge ignites after a slight delay so as to increase the down-bore
base pressure on the projectile.

Another design that involves a discrete distribution of powder
charges along the gun tube, known as the Hochdruckpumpe, was
built by the Germans during World War 11.23

A more recent design, which bears a strong resemblarnce to the
blast-wave accelerator but is quite different in its operational prin-
ciple, is the ram/scram accelerator. Work on the ram accelerator has
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been carried out for over 10 years primarily at the University of
Washington, the Army Research Laboratory, and the Institut Saint
Louis. The ram/scram accelerator is based upon the ramjet princi-
ple. A projectile that resembles the centerbody of a ramjet travels
down the center of a tube filled with a premixed gaseous fuel and an
oxidizer. The basic principle involves an energy release process due
to combustion. The resulting high pressure acts on the aft portion
of the projectile in a continuous manner as it travels down the tube.
The blast-wave accelerator is fundamentally different in that an ex-
plosive on the tube wall is detonated and the resulting blast wave
exerts a high pressure on the aft end of the projectile. The design
and operation of the ram/scram accelerator are discussed in Ref. 24.
According to that study, the authors claim that velocities of ~0.7
to ~12 km/s and masses from grams to hundreds of kilograms are
possible. The range is achieved by five basic modes of ram accelera-
tion operation. There are two subsonic combustion modes, a normal
overdriven detonation mode, and two oblique detonation modes. To
date, experimentally demonstrated velocities have been limited to
approximately 2.7 km/s. Finally, Rodenberger et al.* conducted a
feasibility study on an accelerator concept that employed a thin layer
of propellant lining a gun barrel as the major energy source. This
concept is similar to the proposed blast-wave accelerator.

III. Mathematical Model

In all of the numerical simulations, we assume that the length
of the gun tube is infinite (—o0 < x < +00). A fixed domain is
used to solve the moving-boundary problem by fixing the coordinate
system on the projectile (Fig. 2). The detonation of the explosion
is assumed to be instantaneous and the volumes of the explosives
are extremely small, so that the energy and mass releases from the
detonations can be modeled as point sources or sheet sources for the
one-dimensional accelerator example. The masses of the projectile
and the explosive are denoted as m,, and m,, respectively. The axial
spacing between explosive charges is /, and the energy density e is
5 MJ/kg in all of the calculations.

For simplicity, we assume that the flow is axisymmetric and the
detonation products and the surrounding gas are perfect and inviscid.
The specific-heat ratio y is 1.4 everywhere. We are only interested
in fluid dynamic and thermodynamic behaviors; therefore, the barrel
and the projectile are assumed to be rigid and no material response
is considered. In addition, there is no friction between the barrel
and the projectile. By computing the flowfield around the projectile,
we can simulate the movement of the projectile from the surface
pressure and Newton’s second law. The gas is initially at rest and
has a density of 1 kg/m® and a pressure of 10° Pa.

If serious consideration were to be given to constructing a labo-
ratory prototype launcher, several refinements in the analysis would
need to be made. Most notably, the material properties of the
launcher and the projectile would need to be considered.

IV. Governing Equations

Because the geometry surrounding the projectile is unchanged at
all times, we can fix the computational coordinate system on the
projectile with the origin x = 0 at the left shoulder (see Fig. 2). The
Euler equations are

wr+fx+g_v+sl+52=0 (1)
where
P ou PV
\Vpu pur+p puv
w = ) f= , 8§ = 2
oV puv pvi 4+ p
L e puH pvH

and p is the density, u and v are the velocities, e is the total energy,
p is the pressure, and H is the total enthalpy.
The source terms are defined as

1 0
h
= e and S =p 2
y | v 0
H hu

where & = V is the acceleration of a flow particle due to the non-
inertial motion of the reference frame, and V is the traveling speed
of the projectile. The term s, is due to axisymmetry, and the term s,
accounts for the effect of the noninertial reference frame.

Writing the speed V and position X of the projectile in the lab
coordinate system, the equations governing V (¢) and X (r) are given
by Newton’s second law as

m,V =/ pr,)n,dl, X =V 3)
Tp
with initial conditions
V) =0, XOH=0

where T, is the boundary of the projectile, n, is the x component
of the inward normal of I',, (i.e., the outward normal of the gas
boundary), and p is the pressure on I",.

The explosions are idealized as point mass and energy source
releases: the total mass M and energy E of the explosive product
is added to the gas in a very small area surrounding the point of
detonation.

V. Numerical Method

A time-splitting method is applied to Eqs. (1) to separate the
sourceless Euler equations from the source terms. This makes it
possible to use an existing Euler code without modifications.

The sourceless Euler equations are

w+V-F=0 @

where F = (f, g)7. The finite element equations can be obtained
by the usual Galerkin procedure:

Ne
Low,; =) / F - V¢! dQ + boundaryterms =0 (5)
2

e=1

where ¢/ is the shape function in element e, N, is the element num-
ber, and L; is the lumped mass. Quadrilateral elements are used with
upwind flux calculations. The method was developed in Ref. 26, and
some improvements have been made. These are outlined below. In
this scheme, the integral in Eq. (5) is first approximated by

1
_/ FoVg{ Rl + L= =) - (Fi+F)
1
—L+L-L 1) (Fy+F)] = b+ L1 -

1
'nxz'Fn—Z|12+13*14—11|"41'F41 (©)

when i is the first node of element ¢ and I = (—y, x)7 and
F,, = (F, + F},)/2. The approximation when { is any other node
of e can be written similarly. Then, an upwind scheme is used to
calculate the fluxes n - F. In our work, the Harten-Lex~van Leer-
modified method?’ is applied. This method’s performance is similar
to that of Roe’s method but requires no entropy corrections. Second-
order accuracy is obtained by applying a modified van Albada flux
limiter.?® For time stepping, a simple first-order explicit scheme is
used.

The term sy is treated by a partially implicit scheme when v < 0
and explicitly when vt > 0:

1 n+1

w(n+l) —wt p(n+l)v+

u
when vt <0
At y v
H
=s} when v >0

The terms with superscript + are the results from the sourceless
Euler step. This approach allows for a less restricted Courant—
Friedrichs—Lewy number. After s, is accounted for, the noninertial
term s, is then advanced in time with first-order forward time

stepping.
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After the Euler equations (1) are integrated, the body motion
equation (3) is solved. Traditionally, the pressure computed from
the Euler equations would be used to calculate the force term on
the right-hand side of Eq. (3). However, it was found that better
results with improved stability can be achieved through the solution
of the mass-damped Riemann problem.?® Thus the star pressure p*
of the approximate solution of the mass-damped Riemann problem
is used. This pressure is given by

n—V
pr) = p(r)s(\/?%—) %

Here, s is defined by

1+ 62D+ [1 + 4y /)
s(x) = (8
{max[0, 1+ (v_/yx]}""

with v+ = (¥ + 1)/2. The details of the mass-damped Riemann
problem are given in Ref. 29. Because Eq. (7) is now a function of
V, an implicit scheme can be used to advance Eq. (3) in time. This
increases the stability of the calculation when the impulse from the
explosion is high.

The detonation source term is approximated by a piecewise linear
distribution, with high values of density and pressure being added
to the state at the node of explosion. The values are calculated from
the total mass and energy of the explosion.

The code has been used to calculate several benchmark problems,
including the one-dimensional piston motion driven by a strong
shock. The results are in good agreement with analytical or approx-
imate solutions. Details are given in Ref. 29.

VI. One-Dimensional Ideal Blast-Wave
Accelerator Simulation
Model Description

To test the code, an idealized one-dimensional model is first
solved. This is done by replacing the projectile with a piston, and
detonating the explosives behind the piston as it travels down the
tube.

The tube diameter is 0.1 m, the piston diameter is 0.09 m, and
the mass is 0.5 kg. The gas is initially static, and the projectile is at
rest. In this idealized model, a 0.4-kg sheet explosive is detonated
at 0.04 m behind the base. As the projectile travels through the gun
barrel, 70 more explosives are sequentially detonated at the same
position relative to the projectile, when the projectile center passes
the 0.1-, 0.2-,. .., 7.0-m marks in the lab coordinate system. The
energy density of the explosives is 5 MJ/kg.

Numerical Results

The computational domain is confined to —0.2 < x < 0.1 and
0 < y < 0.05 min the projectile coordinate system, with x = 0 on
the base and y = 0 on the symmetry axis. About 5700 nodes, which
are nearly uniformly distributed in the computational domain, are
used in the computation.

The traveling speed and force distribution for the first 10 explo-
sions are shown in Fig. 3a. The results for all 71 explosions are
shown Fig. 3b. The delay in the arrival time of each successive blast
wave, clearly visible in Fig. 3a, is the result of two effects. First, the
projectile is accelerating away from the blast wave, and second, the
blast-wave velocity is decreasing because of the higher background
density in which the blast wave is propagating. The peak force of
the later blasts also decreases because of two effects. First, as the
projectile velocity increases, the blast-wave velocity relative to the
projectile decreases; thus the interaction between the blast wave and
the projectile is reduced. Another cause is the cushion effect, which
is discussed below in the numerical results for model 1.

Asthe projectile speed increases, the efficiency decreases dramat-
ically. The maximum speed in this case is limited by the blast-wave
speed. From Fig. 3b, we expect that a speed higher than 7 km/s
would be very difficult to obtain in practice.
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Fig. 3 Force and traveling-speed history for the one-dimensional ac-
celerator: a) first 10 blasts and b) all 71 blasts.
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Fig.4 Numerical simulation a conceptual blast-wave accelerator. The
projectile is accelerated by 71 stages of blasts to 7 km/s. Pressure profile
and traveling speed of the projectile are shown. Note the movement of
the projectile relative to the lab coordinate system. Only the early two
stages are shown.
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Analytical Approximation

Certain features of the numerical solution can be explained by
exploiting analytical results from classic blast-wave theory.> For the
case of a planar blast wave, the shock velocity obeys the following
relation in the early stages following detonation:

Ve = 2(E/A) /o) (1/54) ®

In this equation, po is the background density, E is a constant
related to the total energy release of the explosive, and A is the
area. In the approximate theory, the energy release occurs instan-
taneously and has zero volume. This, of course, gives a singularity
in both space and time. Nevertheless, the analytical theory is quite
useful for providing insight into propagational behavior of blast
waves.

In classic blast-wave theory, the background pressure py is neg-
ligible relative to p,, and the initial gas velocity is zero. This results
in the following expression for the shock pressure p,:

pe=12/(v + DIpVH{1 — [y = D/2y)(a}/VD)}  (10)

If we use these equations for the early acceleration stages and use
the strong shock approximation, we find that

ps = §UE/A)/(y + D1 (1/x) an

When the shock strikes the piston, the pressure increase at the sur-
face is approximately 2y /(y — 1). For subsequent reflections, the
pressure increase will be less. Also, after the shock strikes the pis-
ton, this simple 1/x decay law no longer applies. However, if we
ignore these complexities, then the following equation of motion
for the piston can be written:

v, 8 E 1
myV,=—t = ———— (12)
dx 9y +1x

Ifwelet E = % of the total energy release (one-half of the energy
travels in the negative x direction) and integrate over one pulse from
I tol; + 1., we obtain

}
v, = Fgemu + (19/1,,)]] 13

I9m, y+1

Using e = 5MJ/kg, l; = 0.04 m, and /, = 0.1 m, we find the piston
velocity after one detonation to be 1.36 and after 11 detonations we
obtain 4.52 km/s. The corresponding numerical simulation gives
1.18 and 3.9 km/s, respectively. In spite of the gross approxima-
tions, the analytical results are in good agreement with numerical
computations over the first 11 detonations. The simple analytical
solution demonstrates the expected trend, namely that the velocity
is proportional to the square root of the charge-to-projectile mass
ratio.

A final result from the approximate theory helps to explains the
limiting velocity of the ideal one-dimensional acceleration. From
Eqg. (9), we can write the velocity at the piston surface as

Ve = 2(E/A) ot (1/a%%) (14)

We can obtain an estimate of p, from conservation of mass by
writing

3peh.A = pAlx, 15

where Ax, is the distance between explosive charges and #, is the
total thickness of the charge. For p, = 1.5 x 10° kg/m?, this gives
a limiting background density of 20 kg/m?. Using this value in Eq.
(14), we find a limiting shock velocity of 8.4 km/s. The numerical
simulation show an asymptotic value that appears to approach this
value.

VII. Axisymmetric Blast-Wave Simulation

The maximum limiting speed achievable in the one-dimensional
case does not imply that the two-dimensional accelerator also is
limited by this speed. As discussed above, for the accelerator shown
in Fig. 2, if the angle o between the base and the tube is small, the
projectile speed V can be significantly higher than the blast-wave
speed V,,. Assuming that V}, is constant, a simple calculation gives
Vinax = Vp/ sina > 'V, for small «.

Two numerical simulations were conducted. The first is the axi-
symmetric analog to the one-dimensional ideal accelerator and the
second is a geometry representative of a proposed experiment.

Model 1 Description

The geometric and physical parameters and the computational pa-
rameters of the two-dimensional axisymmetric simulation are shown
in Fig. 2. The projectile and explosive mass are the same as the one-
dimensional ideal accelerator. The afterbody angle is 20 deg, and
the forebody angle is 45 deg. The explosive is detonated at 0.04 m
behind the rear shoulder of the projectile and 2.5 mm from the tube
wall. The energy density of the explosive is still 5 MJ/kg, and again,
71 explosions of 0.4-kg charges are used.

Numerical Results

Figure 4 shows the flowfield of the first two explosions. The
resolution of the detonation waves is quite sharp, as seen from Fig. 5.
(Note that a logarithmic scale is used in the plot.)

In the classic similarity theory for blast waves, the mass of the
explosion product is ignored. The result is that the pressure is low
in the center region of the blast wave. However, in numerical simu-
lations, the explosive mass of each charge is much higher than the
mass of the gas in the neighborhood of the explosion. The inertia of
the dense explosion products prevents fast conversion of the internal
energy to kinetic energy. A thin layer of very dense, high-pressure
gas is found near the wall during the early stages of each explosion.
This is because the explosive is placed at a distance (2.5 mm) from
the wall. The pressure increases after a reflection. The reflection is
clearly seen to cause a kink in Fig. 4a. The main part of the blast
wave in Fig. 4a is not circular. This is due to blast-wave implosion
in the radial direction and explosion along the tube axis.

The blast is reflected back after it hits the base of the projective
Fig. 4b. The high-energy explosion products near the barrel continue
to expand and force the reflected gas from the projectile to form a
layer of hot, dense gas that covers the entire base. This layer moves
backward relative to the projective eventually forming a jet at the
end of the projectile (Figs. 4c—4g).

This hot and dense gas layer also acts as a cushion against the blast
waves from later explosions. Figures 5a and Sb show the projectile
traveling speed and the force. The peaks of the later explosions
become less sharp, indicating that the blast waves have been damped.
This cushion effect, a result of damping of the pressure peaks, can
be beneficial for practical designs where the material response must
be considered.

The calculations show that the distribution of the explosion prod-
ucts is very favorable in that most of the high-pressure region is on
the base of the projectile. Some explosion gases leak into the front
side of the projectile for the subcaliber projectile used in this numer-
ical simulation. The amount is very small and the resulting force is
negligible compared to the back side. The projectile for a real accel-
erator will be full caliber or have a much smaller annular gap than the
one used in the simulation. The subcaliber geometry was used in the
numerical simulation to avoid a sharp corner in the computational
domain that may have negative effects on accuracy and numerical
stability. Note that even when there is no leakage, the pressure in the
right region will increase with traveling speed, because the shock-
induced pressure in front of the projectile will continually increase.
Figure 6 shows the projectile speed as a function of time.

The arrival times of the blast waves are nearly the same for all
explosions. This is different from the one-dimensional case and
is expected. The delay in arrival time would be significant only
when V is close to Vi = V,/sina. The average blast-wave speed
calculated from the numerical simulations is approximately 10 km/s.
Therefore, for o = 20deg, Vimux = 29 km/s, which is much higher
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than the maximum projectile speed of approximately 7 km/s in the
one-dimensional accelerator.

The force on the projectile becomes smaller in the later stages,
as shown in Fig. 5. As traveling speed increases, the distance trav-
eled during the time between detonation and blast arrival also in-
creases. This shifts the pressure peak on the projectile base toward
the rear, where the circumference is smaller, thus reducing the net
force. The cushion effect also reduces the pressure peak. One way
to increase the force for the later stages would be to detonate the
explosives earlier, so that the blast can arrive at the same position on
the projectile base. Although the final velocities for both one- and
two-dimensional simulatjons are almost the same, the degeneration
in efficiency when projectile speed is large is much smaller in the
two-dimensional case than the one-dimensional case. This is easily
seen by comparing Fig. 3b with Fig. 4b.

The pressure plots for the first two explosions (Figs. 4a—4h) show
that the maximum pressure on the projectile base rarely exceeds
1 GPa, which is within the strength limit of many materials. The
peak pressures are much smaller for later explosions. In an optimal
design, smaller charges would be used for earlier explosions so that
the peak pressures stay the same for all explosions.

Another simulation was conducted using much higher charge-to-
projectile mass ratio. Similar trends were found but are not shown
here. Grid convergence was performed in this simulation using two
different grid sizes. The difference between the results was smalil.

Model 2 Description

To date, no experiments have been conducted, but a simple proof
of concept experiment has been proposed. A circular cylinder with
a flat base is prelaunched at 1.3 km/s into a gun tube. A series of
explosive rings along the tube wall will detonate as the projectile
passes. The tube diameter is 10 cm, and the explosive ring detonates
when the projectile base is 0.04 m from the charge. Other parameters
are as follows: a) the projectile is full caliber, b) the mass of the
projectile is 90 g, ¢) each charge has a mass of 10 g, d) the initial
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Fig. 5 Force and traveling-speed history of the axisymmetric acceler-
ator: a) first 10 blasts and b) all 71 blasts.
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projectile velocity is obtained by another mechanism, and e) there
are 12 explosives. The same energy density of 5 MJ/kg is used.

Numerical Results

The speed, thrust, and trajectory are shown in Figs. 6, 7, and 8,
respectively. Because the overall projectile speed is low, the degra-
dation in energy efficiency for subsequent detonations is quite small.
Because of the lower energy density, the peak pressure on the projec-
tile is 1 GPa, roughly at the limit of high-strength steels. Despite the
low energy density, the acceleration is very large, about 300,000 g,
and the energy efficiency is about 30%, which is very high.

The first peak in the force (thrust) in Fig. 7 is due to the initial im-~
pact of the blast wave on the projectile. The second peak visible for
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detonations 212 is due to a high-pressure jet along the centerline,
which was observed in pressure contours. As the shock waves con-
verge along the centerline of the tube, an extremely high pressure
occurs. This produces a nearly cylindrical virtual shock tube along
the launch-tube centerline. Its diameter was approximately 20% of
the launch-tube diameter. The effect is similar to the so-called super
shock tube described in Ref. 12. This phenomenon has interesting
possibilities for producing a super shock tube using phased annular
ring explosions.

Approximate Analysis

We can again exploit the ideal-blast-wave theory to find the pro-
jectile velocity as a function of the accelerator parameters. If we
assume a cylindrical line charge of length 7 D and energy E, then
the shock pressure can be written as

ps = 3[(E/mD)/(y + DI1/r?)

where r is the distance from the explosive line charge. If we take
r as the tube radius (D/2), then an approximate expression for the
peak force on the cylinder is

F, = [(E/D)/(y + 1]

From this result, we find that the projectile velocity after i + 1
detonations can be written as

Vpivr = {V2, + (ne/mpela/D)/(y + D1}

where Al is the distance between each charge. Using an insertion
velocity of 1.3 km/s, we find the final velocity after 12 detonations
to be 2.22 km/s, which is remarkably close to the numerical solution
of 2.28 km/s.

VIII. Conclusions

Our calculations show that, in theory, the blast-wave accelerator
can accelerate projectiles to very high speeds (7 km/s for the present
model). By tuning the shape and increasing the total charge, much
higher speeds can be achieved. The distribution of the high-pressure
gas is favorable, in that most of it surrounds the rear of the projec-
tile. For the axisymmetric accelerator simulation, about 8% of the
chemical energy is converted into the kinetic energy of the projec-
tile. This is a satisfactory efficiency for a hypervelocity launcher. At
lower speed, the efficiency is even higher. Previous calculations us-
ing a quasisteady analysis indicate that by modifying the geometry
and explosive parameters, higher efficiencies can be achieved.

The present simulations are still preliminary. We have yet to ex-
plore the parameter space by considering different charge distribu-
tions, different projectile shapes, and different detonating strategies.
However, the exploration should be straightforward with the nu-
merical model established in this paper. Future modification on the
numerical model will include nonperfect gas effects and chemical
reactions.
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